# **Table of Contents**

| Beer's Law Lab              |    |
|-----------------------------|----|
| Indigo Synthesis Lab        | 4  |
| Chemical Kinetics Lab       | 8  |
| Weak Acid Titration Lab     | 12 |
| Complexometric Titration    | 18 |
| Ion-Exchange Chromatography | 22 |
| Water Project               | 25 |

# Beer's Law Lab

Following parts need to be included in the Lab Report

# Title page

## **Abstract**

State the objective and the results you obtained with help of the experiment Items that need to be included

- name of the dye investigated
- experimental absorptivity of the dye
- quote the %relative deviation
- Beer's Law plot (since you need the plot to obtain your results,  $\varepsilon$ )

# **Introduction**

Points that are listed in the abstract section should be discussed with more detail. In addition discuss following topics

- Absorption Spectroscopy
- State and explain the Beer's law equation
- Explain how the Beer's Law plot was used to calculate the molar absorptivity
- State that the molar absorptivity is an intrinsic property of the dye. (state the name of the dye)

# **Experimental** See ChapterT2-4

#### Results

State the dye and its original concentration

This is just an example to illustrate the necessary calculations. You need to quote results for your dve.

Allura red dye #40, c = 3.989 M, M stands for mol/L

#### Include table

|                   | Sample 1               | Sample 2                  | Sample 3                  | Sample 4                  |
|-------------------|------------------------|---------------------------|---------------------------|---------------------------|
| C dye [M]         | 3.989x10 <sup>-5</sup> | 2.6593 x 10 <sup>-5</sup> | 1.9945 x 10 <sup>-5</sup> | 1.5956 x 10 <sup>-5</sup> |
| Absorbance        | 0.824                  | 0.725                     | 0.538                     | 0.424                     |
| λ absorption [nm] | 505.1                  | 505.1                     | 505.1                     | 505.1                     |



# Graph the data points to obtain Beer's Law plot

Draw the best fit line!
Do not connect the points.

#### **Dilution Calculation**

Example

Take 1 ml = 0.001 L of the stock solution and add 99 ml of distilled water to dilute it.

Your final volume, V<sub>2</sub> adds up to 100 ml or 0.1 L.

$$M_1V_1 = M_2V_2$$

$$(3.989 \times 10-3 \text{ M}) (0.001 \text{ L}) = (M_2) (0.1 \text{ L})$$

 $M_2 = 3.989 \times 10^{-5} M$ , this is the new concentration

# **Molar Absorptivity calculations**

$$A = \varepsilon b c$$

slope = 
$$\varepsilon$$
 b

16275 
$$\frac{\text{Abs L}}{\text{mol}} = \varepsilon$$
 b, b is the path length of the cuvet b = 0.685 cm

$$\epsilon = 16275/0.685 \frac{\text{Abs L}}{\text{mol cm}}$$

$$\varepsilon = 23759 \frac{\text{Abs L}}{\text{mol cm}}$$

#### Calculate the % relative deviation:

Calculate the deviation

Theoretical value – Experimental value

$$=27000 \frac{\text{Abs L}}{\text{mol cm}} - 23759 \frac{\text{Abs L}}{\text{mol cm}} = 3241 \frac{\text{Abs L}}{\text{mol cm}}$$

Calculate % Relative Deviation:

[(deviation)/(theoretical value) x 100%

= {[3241 
$$\frac{\text{Abs L}}{\text{mol cm}}$$
] / [(27000  $\frac{\text{Abs L}}{\text{mol cm}}$ ]} x 100%

$$= 12.00\%$$

## **Discussion**

Following topics can be discussed

- Dilution error
- Discuss how close your data is to the best fit line
- If your data points do not lie on the line, explain why. Hint dilution error
- The line does not go through point (0,0). Explain why.